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It is shown that the well-known Jeffery-Hamel solution of the Navier-Stokes equations 
admits generalization to the case in which the viscosity p and density p are arbitrary 
functions of the angular co-ordinate8. When I Ral< 1, where R is the Reynolds number 
and 2a the angle of divergence of the planes, lubrication theory is applicable; this 
limit is first treated in the context of flow in a channel of slowly varying width. The 
Jeffery-Hamel problem proper is treated in $$3-6, and the effect of varying the 
viscosity ratio h in a two-fluid situation is studied. In  $5, results already familiar in 
the single-fluid context are recapitulated and reformulated in a manner that admits 
immediate adaptation to the two-fluid situation, and in 8 6 it is shown that the single- 
fluid limit ( A  + 1) is in a certain sense degenerate. The necessarily discontinuous 
behaviour of the velocity profile as the Reynolds number (based on volume flux) 
increases is elucidated. Finally, in $ 7, some comments are made about the realizability 
of these flows and about instabilities to which they may be subject. 

1. Introduction 
Flows with non-uniform viscosity, particularly two-fluid flows with a viscosity jump 

at the interface, arise in many processes of technological importance. Analysis of such 
problems is complicated (i) by the fact that the interface geometry in general changes 
with time even if the boundary conditions are steady, and (ii) by the fact that, if the 
interface intersects a solid boundary, the no-slip condition is (in general) inadequate in 
an immediate neighbourhood of the contact line, which may be observed to move 
relative to the solid surface. 

In attempting to approach problems in this category in a general way, it seems 
natural first to study situations in which these particular difficulties are avoided. 
Figure 1 shows one such situation, v iz  the flow of a fluid of non-uniform viscosity 
along a two-dimensional duct of slowly varying width. This elementary problem is 
analysed (under the lubrication approximation) in $ 2, in order to provide motivation 
for the subsequent study ($8 3-7) of the Jeffery-Hamel configuration (figure 2), which 
is the main content of this paper. In 8 3, we show that the well-known exact solution of 
the Navier-Stokes equations (Jeffery 1915, Hamel 1916; see Batchelor 1967, 8 6.6) 
can be generalized to the situation in whioh the viscosity p and/or the density p are 
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arbitrary functions of the angular co-ordinate 8-  conditions that are clearly com- 
patible with a steady purely radial flow. A continuous variation of p and p can be 
induced by heating one boundary, and in this case ($3) an exact solution of the coupled 
nonlinear equations of motion and heat transfer may be obtained. 

In  $5 4-6, we specialize to the two-fluid problem of figure 2 (c), in which the density is 
continuous, but the viscosity is discontinuous across 8 = 0. In  5 4, the low-Reynolds- 
number analysis for this situation is presented, and the upper limit of the angle 2a for 
which purely radial flow may be expected is obtained. In  $ 5,  results that are well- 
known for the uniform viscosity case are obtained by a numerical procedure and are 
interpreted in a new light. In f 6, the same numerical procedure is used to analyse the 
effects of the viscosity jump, and it emerges that an important effect of the viscosity 
stratification is to resolve the degeneracy implied by the possible existence of steady 
asymmetric solutions which (in the uniform-viscosity case) are mirror images of each 
other. Resolution of this degeneracy also implies important qualitative changes in the 
behaviour of the flow as the Reynolds number increases. 

2. Flow of viscosity-stratified fluid in a slolkly varying channel 
In  the situation of figure 1 (a), let a be a typical wall slope, and let R = Qp/ji, where 

2 9  is the total flux of fluid, and ji is the average viscosity across the channel. Then we 
may expect that the lubrication approximation will be valid provided that 

a <  1, Ra< 1. (2.1) 
The natural transverse co-ordinate is 

and, in the lubrication approximation, the streamlines are given by 7 = const. 
A steady flow is possible if p is constant on streamlines, i.e. if 

' 

P = P( t ) .  
The velocity u(7) along the streamlines then satisfies 

where 
(fig) = -C(x) ,  

G(z) = - ap/ax, a(z) = al(z) +a&). 

With boundary conditions u(0) = u(1) = 0, (2.4) integrates to give 

where 

In  the two-fluid cme shown in figure 1 (b), the interface y = h(z)  becomes 7 = H, 
where 
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q = o  

q =  1 __--- 
Q = H  

P l  ---__ O-=Z 

Q'O --x- -a 

(a) ( b )  (C) 

FIQITRE 1. Flow in a slowly varying channel with viscosity stratification: (a) continuous variation 
of viscosity; (a) two-layer model; (c) two layers entering a slowly diverging section; the interface 
positions itself in the diverging section along a plane 0 = const. 

i.e. the ratio of widths of the two layers is constant. The viscosity function is 

P2 (7 < 
and, from (2.7), 

I + ( A  - 1) H2 

1 + ( A -  l ) H  27 = 

In the lower fluid (viscosity p2), (2.6) gives 

U2Q 

P2 
u = uz(7) = - (74 - t7"7 

and the flux in this layer is 
Q2 = a/;u2(7)d7 = a3B - (37--H)EI2. 

6P2 
Similarly, 

Ql = (37' - (1 - H ) )  (1 

where (cf. 2.10) 
27' = 1 + (AF1- 1) (1  -H)2 

1 + (A-1 - 1) ( 1 - H )  * 

(2.9) 

(2.10) 

(2.11) 

(2.12) 

(2.13) 

(2.14) 

Clearly, since Q1 and Q2 are both constant, we must have 

a3G = const. (2.15) 

Moreover, elimination of aSC from (2.12) and (2.13) yields 

AqH2[M2+( l -H) (3+H)]  = (1-H)2[(1-H)2+AH(4-H)]  (2.16) 

(where q = Q1/Q2), a quartic equation for H, which has a unique real root H(q,  A )  in the 
physically relevant range 0 < H < 1. 

We have neglected surface tension in the above analysis. The pressure jump due to 
surface tension y is approximately ya2h/8sB, and the associated jump in pressure 
gradient along the interface is y a3h/as3. If, for example, h(s) = h, cos kx, with a = h, k, 
this jump has order of magnitude yas/h& and this is negligible compared with 
lap/azl - pQ/aG (where a, is a typical value of a(%)) provided that 

a3<-(-)  FQ ho . 
W O  a, 

(2.17) 

For very slow flow rates, surface tension inevitably becomes important, and will tend 
to keep the interface plane in the situation sketched in figure 1 (b). 

For the particular case of a channel that diverges at a constant angle (figure l c ) ,  
10-2 
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the condition (2.8) implies that the streamlines in the diverging section are purely 
radial (8 = const. in polar co-ordinates with origin r = 0 at the (virtual) intersection of 
the diverging planes). Hence, in the diverging section, p = p(0),  and ucc f (8) /r ,  from 
mms conservation. The above simple analysis is of course valid only if the conditions 
(2.1) are satisfied. 

In 8 3, we relax these conditions, and consider the general Jeffery-Hamel problem 
for arbitrary a and R, and arbitrary p(8). We shall also allow the density p to be a 
function of 8; since inertia is, in general, important, this will also have an influence on 
the velocity field. 

3. Jeffery-Hamel flow with /I = p(@, p = p(8) 
Consider now the flow configuration of figure 2 (a), with p = p(8), p = p(8). Let 

and let p(8) = p / p ,  p(8) = p/p. In polar co-ordinates (r, 8, z ) ,  let 

Then the radial and transverse components of the Navier-Stokes equations are 

where p(r ,  8) is the pressure field. From the second of these, 

where c is constant, andp, is at most a function of T.  Substitution in (3.3a) shows that 
p ,  may be taken to be constant, and we obtain 

(3.5) 
This is the required generalization of the standard Jeffery-Hamel equation 

(jif f ) f  + 4pf + 2pf 8 = c. 

f"+4f+2fB=c. 
The boundary conditions are 

and it follows from (3.3) and (3.5) that 
f = O  on 8 = f a ,  

The constant c therefore provides a measure of the wall pressure gradient. 
Iff (0, a, c, A) is any solution of ( 3 4 ,  (3.7), where the 'parameter' A summarizes the 

dependence on the functions P(8) and p"(8),t then we may construct a corresponding 
Reynolds number 

R = Q p / p  = 1" f (0, a, c, A) d0 = R(a, c,  A), (3.9) 

where R > 0 corresponds to (net) diverging flow, and R < 0 corresponds to (net) con- 
verging flow. For fixed a, (3.9) provides a relationship (in effect) between wall pressure 
gradient (i.e. c) and flow rate (i.e. R).  

t Strictly, of course, this is a functional dependence. 

-a 
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FIUIJRE 2. The Jeffery-Hamel configurcttion: (a) source flow (Q > 0) or sink flow (& < 0) with 
angular stratification of p and p ;  (a) angular stratification caused by differential heating of the 
boundaries 0 = f a; (c) the two-layer flow studied in 59 4 and 6. 

In the well-studied caae of a single fluid of homogeneous properties, the parameter A 
of course disappears and we have a relationship 

R = R(a,c),  (3.10) 

which defines a surface (with possibly many folds and branches) in the space of the 
variables (R, a, c). The geometry of this surface provides important information both 
about the multiplicityof steady-state solutions and about the manner in which a solution 
changes as a or R is slowly varied. A classification of velocity profiles in terms of the 
numbers of maxima and minima that they exhibit was provided by Rosenhead (1940) 
and refined by Fraenkel(l962), who then sought to determine the boundaries in the 
(R, #)-plane of regions in which solutions of a given class may exist. This information 
is in fact all contained in the function (3.10); for example, the important ‘barrier’ 
curves A?-, of Fraenkel (1962) may in principle be obtained by eliminating c 
between (3.10) and the equation 

(3.11) 

In  8 5 below, we shall recapitulate some results of the single-fluid analysis, and pre- 
sent these in a manner that admits simple extension to the inhomogeneous situation. 

Before specializing to the two-fluid problem, let us briefly note one situation in 
which continuous angular stratification of viscosity and density may be expected, viz 
that in which the walls 8 = f a are maintained at  different temperatures Tl and T,, 
aa depicted in figure 2 (b). A steady temperature distribution T(r,  8) is then established 
in the fluid. Neglecting buoyancy forces, the velocity field is still given by (3.2), and, 
neglecting heat produced by viscous dissipation,t T satisfies 

u.VT = uV~T,  (3.12) 

g(a ,c )  E aR/ac = 0. 

where K is the thermal diffusivity of the fluid. The solution is simply 

T = (Tl- T,) 8/2a+ +(Tl + P,), (3.13) 

and so ,u and p, being functions of T ,  are functions of 8 via (3.13). When AT = Tl - T, 
is not too large, a linear variation of ,u and p with 8 may be expected. 

The neglected buoyancy force is of order a+gAT, where cc, is the coefficient of 

t The heating effect aseociated with viscous dissipation in the uniform-viscosity case was 
studied by Mlllaaps & Pohlhaueen (1963). 
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thermal expansion, and this is indeed negligible compared with the viscous force (of 
order v I Q I / r 3 )  provided 

r Q (vIQI/a,gAT)) = I'b. (3.14) 

Neglect of viscous heating @ is justified if the extra temperature Tv(r, 6) generated in 
this way is small compared with AT. Considering only the case of converging flow 
(Q < 0), Tv is given (in order of magnitude) by 

(3.15) 

Both inequalities (3.14) and (3.15) can be satisfied provided that 

FIQla%g2/pcgAT< 1,  (3.16) 

and, under this condition, p and p will be functions only of f3 throughout the range 
r d  < r g Tb. 

4. Discontinuous variation of p ;  behaviour near R = c = 0 

for a discontinuity on the plane 6 = 0 (figure 2 c ) :  
To simplify matters, suppose now that p is uniform, and that p is uniform except 

P =  

Then ,ii = $(pl +p2),  and, writing 

f (8) = 

(3.5) becomes . .  

fil(f: + 4f1) + 2f; = c = P 2 ( f  + ?fa) + 2f g, (4.3) 

fl@) = f 2 ( - 4  = 0, (4.4) 

[f]+ = [pf 'I! = o on 6 = 0, ( 4 4  

and we have the boundary conditions 

the latter ensuring continuity of velocity and tangential stress across the interface. 
It may be noted that the normal stress is 

(4.6) 
_ *  4 f 

~ O e = - p + 2 p e , , = - p + 2 p p  - - 

and this is automatically continuous across 0 = 0 since the constant c in (3.4) is the 
same throughout the flow domain. 

We consider first the behaviour near R = c = 0, where the terms 2f ;, 2f of (4.3) 
may (presumably) be neglected. The solution of (4.3)-(4.5) is then 

( P b  

(4.7) 
c-vl(6) = A(cos 2a - cos 26)  + B(sin 2a - sin 20), 

c-v2(6) = AC(cos 2 a  - cos 26) - hB(sin 2a + sin 26), 
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FIGURE 3. (a) Curves given by (4.11) (solid) and (4.12) (dashed). Above the dashed curve, 
reversed flow occurs in the less viscous fluid. On the solid curve 2a,,(A), the inertia-free solution 
(4.7) is singular; for a > a,,(h), eigenfunction solutions dominate over the Jeffery-Hamel 
solution; the point 8 (h = 1,2a 2: 287.6') is singular in this respect. The change in the character 
of the (R, c)-diagram along the segment E+F is discussed in f 6. (b)  Sketch showing the low- 
Reynolds-number streamline pattern that may be expected at  a point such as X of figure 3 (a) 
(where revered flow occurs) when a channel diverges at an angle 2a. 
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2A+(l-A)cos2a = (1 - A )  (1 - cos 2a) 2 - (1 - A )  cos 2a , c= 
8Acos2a ' A =  

8Acos2a ' 8h sin 2a 
(4.8) 

and A = pl/p2 ( = fi1/p2). The Reynolds-number relation (3.9) may then be calculated 
in the form 

R/c = (8h)-l[(A- 1)2 (a-tana) +2A(2a-tan2a)] = g ( a , A ) ,  say, (4.9) 

and we may infer that the general function R(a, c, A )  satisfies 

(aR/ac),R-o = g ( a ,  A). (4.10) 

There is a singular behaviour when g(a ,  A) = 0, i.e. when 

tan 2a - 2a ( A  - - -- 
t ana -a  - 2h a 

(4.11) 

For any h > 0, there are two angles a,,(h) and ac2(h) satisfying (4.11); these are shown 
by the solid curves of figure 3 (a). Only the lower curve 2aCl(h) is in general physically 
relevant,? since the similarity solution loses physical significance for a > acl(A); in 
this regime, the flow may be expected to be sensitive to the precise geometry and entry 
conditions near 0 (Barenblatt & Zel'dovich 1972; Moffatt & Duffy 1980). 

As the angle 2a increases from zero, the wall stress as given by the solution (4.7) 
decreases, and vanishes first (in the less viscous fluid) when (af/aO),, = 0; this condi- 
tion determines an angle a b  given by 

- 2h 
cos2ab = - 

1 +A' 
(4.12) 

The variation of 2ab with h is shown by the dashed curve of figure 3 (a) .  For 201 > 2ab, 
reversed flow occurs in the less-viscous fluid. The streamlines may then be expected to 
have the form sketched in figure 3 (b). 

5. Recapitulation and reformulation of results for the single-fluid 
situation ( A  = 1)  

5 .  I .  Analytical results 

There are three independent analytical results that provide useful checks on the 
numerical procedure that follows. 

(i) Inertia-free limit. When h = 1, (4.9) gives 

R/c = 4(2a- tan 2a), (5.1) 
from which we infer that 

(aR/a~) , , , ,~  = i(2a-tan2a). 

Note that the slope of the (R,c)-curve a t  the origin changes sign as 2a increases 
through &r. 

t The single-fluid limit h -+ 1 is peculiar here; the symmetric low-R flow breaks down 
(Fraenkel 1962) at 261,,( 1 )  N 257.5". For the two-fluid flow ( A  + l), the velocity is necessarily 
asymmetric about 8 = 0, and it is the antisymmetric ingredient that produces the singularity 
on the lower curve when h * 1.  (The limits h --f 1 and 2a + n do not commute.) 
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(ii) Rosenhead's exact solution. A particular exact solution of (3.6) and (3.7) (Rosen- 
head 1940, equation (5.11)) is given by 

f(0) = 2H- 1 - 3H tanh2Hd.8, (5.3) 

where H is a parameter related to a by 

2H-1 4 
aH4 = artanh (-) , (5.4) 

the corresponding values of c and R then being 

c = 2(H2-l), R = 2[3(2H- 1)]*-2a(H+ 1). (5.5) 

Equation (5.4) has two roots Hl(a) and H2(a) for a < a, N 38.23". When a = ao, these 
solutions merge, and there is no real solution for a > a,. Equations (5.4), (5.5) define 
(parametrically) a curve in the (a, c, R)-space which lies on the surface R = R(a, c) in 
the region R > 0, a Q a,,. Figure 4shows the projection of this curve on the (c, R)-plane, 
the trajectories of the two solutions as a increases from 0 to a, being as indicated. (When 
a = a,, H N 1.198, R N 1.159, c 2~ 0.868.) The projection of the same curve on the 
(R, a)-plane is the curve denoted a1 by Fraenkel(l962). 

When H 9 1, (5.4) gives 

aH4 - artanh (g)4 = 1.146 ... = 8, say, (5.6) 

(5.7) 

f(0) - H{2-3tanh2[H4(a-0)-/3]}, (5.81 

and (5.5) gives 

Equation (5.3) may then be written 

aR  - 28(J6-/3) = 2-988 ..., H - (&)4 9 1. 

which has the character of a positive jet trapped between the two walls. 
(iii) Boundary-layer behviour as q + 00. When c is large, (3.6) may be solved by 

boundary-layer techniques. For a boundary layer on 0 = a, the appropriate boundary- 
layer variable is 

and f admits the asymptotic expansioni 

q = K(a-8), K = (&)f, (5.9) 

f(0) - KafO(7) +fh)  + K-Ya(7) + .... (5.10) 

The appropriate boundary conditions are 

fJ0) = 0, f,!Jq)-+ 0 as q-+m (n = 0,1,2 ,... ). (5.11) 

Substitution of (5.10) in (3.6) gives, at leading order, 

fo" = 2(1 -f 3, fO(0) = 0, fo'(m) = 0, 

with the well-known solution (see e.g. Goldstein 1938, 5 56) 

(5.12) 

f, = 2 - 3 tanha (q  +8), (5.13) 

t An expansion of this kind was proposed by Bulakh (1964), but he did not obtain the solution 
(5.15) forfi obtained here. 
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FIQURE 4. Locus of the Rosenhertd solution (5.3)-(5.6) 
aa a increases from 0 to a,,. 

where /3 2: 1.146 as above. At the next order, 

and this has the solution 

(5.14) 

(5.15) 

From (3.9) we now have 

or, in terms of c, 

(5.16) 

Higher terms in this expansion may be obtained, but the expression (5.16) is quite 
sufficient to provide a good check on the accuracy of the numerical procedure (see 
figures 6 and 7 below). 

Two other types of asymptotic solution may be constructed, and these are also 
relevant in cataloguing possible behaviour for large c. These are the ' wall-jet boundary- 
layer' solution (cf. (5 .8 ) )  

f -  K2[2-3tanh2(7-fl)]-[3(9)4tanh(7-B)sech2(7-/9)+ 1]+O(K-8) ,  (5.17) 

R N - n ( 2 c ) i + 6 ( 1 - ( ) ) i ) ( f o ) * - P a + ( 9 ) k ( ; )  2 *  +O(c-i). 

arid the 'interior-jet ' solution 

f J  K2[3sech2K(B-B,)-1]- l + O ( K - 2 ) .  (5.18) 

The latter makes a contribution to R given by 

SR, -la (fJ+Ka+ 1 ) d O  - 6K, (5.19) 
-a 
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so that, for example, a velocity profile exhibiting a single central jet with conventional 
boundary layers on both walls will yield an asymptotic relationship only slightly 
different from (5.16), namely 

(5.20) 

5.2. Numerical results 

Accurate determination of any of the characteristics of the surface R = R(a, c) requires 
numerical work, either using the exact elliptic-function solution of Rosenhead (1940), 
or by direct numerical integration of (3.6). The latter procedure is more easily extend- 
able to the inhomogeneous situation, and it is therefore the procedure that we adopted. 
The equation was integrated by a shooting method, using a fourth-order Runge- 
Kutta-Merson procedure. For givenc,! ’( - a) was guessed, and theequationintegrated 
across to 6 = a. According to the value off (a), f ’( -a) was then modified, and the 
integration repeated. The procedure was iterated until the condition f (a) = 0 was 
satisfied to  a specified accuracy. 

The linearized solution provided a guide in the initial guess-work for small c; and 
then, for each new value of c, linear extrapolation gave a first estimate of the new 
f ’( - a). For each solution f (0, a, c), the corresponding R = R(a, c) was calculated from 
(3.9). Figure 5 shows the form of the resulting curves near the origin (R = c = 0) for 
2a = in, 3;. and n. The slope of the tangent at  the origin satisfies (5.2), and the point X 
corresponding to Rosenhead‘s solution for 2a = +n is as indicated. Points on these 
curves (which we shall denote as brunch A curve8) correspond to solutions which, in 
a sense elaborated by Fraenkel (1962), are analytically dependent on R and a in 
a neighbourhood of R = 0 and a = 0. 

.Figwe 6 shows the branch A curve for 201 = in computed out to c = 300. This shows 
three important features, which are present also in similar diagrams for all other values 
of a < a,  (for the behaviour when a > a,, see 0 5.3 below): 

(i) The solid curve corresponds to solutions symmetric about 6 = 0, while the 
dashed curve that branches off from the point Pa corresponds to solutions that are 
asymmetric about 8 = 0. At Pa, f’( f a) = 0,  and as we pass through Pa on the solid 
curve, reversed flow appears on both walls. In  Fraenkel’s notation, for different values 
of a, the value of R, = Rp(&) say, at Pa provides the curve (for 
2a > n). The bifurcation at Pa from symmetric to asymmetric flows is continuous (but 
not analytic) in the parameter R. 

(ii) The solid curve shows a maximum at the point R, (R, N 5.5 in figure 6) .  For 
R > R,, a steady solution analytically related to  the branch A solutions is not possible. 
Since aR/ac = 0 at R,, it is clear that, as stated earlier, the corresponding ‘barrier’ 
in the (R, a)-plane is given by eliminating c between (3.10) and (3.11). If Ris increased 
through R,(a), discontinuous behaviour must occur (see below). 

(iii) For R c 0 and c large, the asymptotic expansion (5.16) is relevant; the 1-term, 
2-term, 3-term and 4-term approximations are as indicated in figure 6; the 4-term 
approximation is indistinguishable from the exact numerical curve for c 2 20. 
Similarly, the circled points on the upper solid portion of branch A (figure 6 )  have been 
calculated from (5.20) to order c-4, and the accuracy here is good for c 2 200; the 
profiles here do indeed have the character of a forward central jet with reversed flow 
near the w + 3 .  For c 2~ 200 (K 21 3.16) and a = in, the second term of (5.20) evidently 

(for 2a c n) and 
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R l  

-'i 
FIGURE 6. Branch A curves near R = c = '0 for 2 a  = n, in, in. Rosenhead's solution 

corresponds to the point X on the curve 201 = in (c = - 1.131, R = 0.217). 

FIGURE 6. Branch A of the curve R = R ( @ ,  c), together with successive approximations to the 
lower portion baaed on the asymptotic expansion (5.16). The four-term approximation is 
indistinguishable from the exact result for c 2 20 ( - R 2 6). Tho circled points are values 
predicted by the asymptotic results of $6.1, correct to order c-%. 



Flow of juid of non-uniform viscosity 295 

0 

0 

FIGURE 7(a, b, c). For legend see p. 296. 
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t 
I I 

1 t 

( d )  

FIGURE 7. (a) The function R = R(+r, c) ; the solid portions correspond to flows symmetric about 
f? = 0, and the dashed portions correspond to asymmetric flows. The circled points are values 
predicted by the asymptotic analyses. ( b )  Velocity profiles corresponding to the points A,, A,,  
A,, B, and B,. (c) Velocity profiles corresponding to points A, ,  B,, B,, B6. Only one of the two 
asymmetric profiles Bb is included here. ( d )  Asymmetric velocity profile A (c = 23, R = - 2.5) 
and points calculated from one-term (m) and two-term (0) boundary-layer analysis. 

still dominates over the first, and so R > 0. The points on the dashed portion of branch 
A have been evaluated through combining a normal boundary layer on one wall with 
a ‘wall-jet boundary layer’ (equation (5.17)) on the other. 

The question of what may happen when R > R, is to some extent answered by 
figure 7 (a) ,  which shows the (R, c)-diagram for 2a = n. This shows a second computed 
branch, denoted branch B, which extends to higher positive values of R. The velocity 
profiles corresponding to the points A , ,  . . . , A, on branch A ,  and B,, . . ., B5 on branch B 
are shown in figures 7(b,c). The circled points in figure 7(a) again correspond to 
asymptotic evaluation correct to order c-4. The points on the lower portion of branch B 
were obtained using a wall-jet boundary layer on each wall (see e.g. the profile labelled 
B, in figure 7(c)). The profile A, (figure 7 4  (a wall-jet on one boundary and a con- 
ventional boundary layer on the other) is poorly approximated by the leading-order 
boundary-layer analysis, but accuratelyrepresented when the O( 1) terms of (5.10) and 
(5.17) are included. If R increases through R,, then clearly a jump to branch B is 
possible, such a jump involving a 30-fold increase in c! This is a transition, in Fraenkel’s 
(1962) notation, from a profile of class 11, to a profile of class 111,; the fact that it  is 
necessarily discontinuous was recognized by Fraenkel, but may be more clearly 
apparent in the visibly separated branches of the (R, c)-diagram than in the intricacies 
of his elliptic-function treatment, 

The qualitative picture that emerges from these results and from a large number of 
further profile computations, is summarized by the sketch of figure 8, which is typical 
of any angular separation in the range in < 2a < 2a,. (If 201 < &n, the only qualit.ative 
change is that branch A passes t’hrough the origin with negative slope-cf. figure 5.) 
The velocity profiles on the various sections of branches A and B are as indicated, 
together with the code used by Fraenkel(l962) to distinguish the various classes. The 
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FIGURE 8. Qualitative character of velocity profiles on various sections of branches A and B, for 
in c 2u c n. The Roman numerals correspond to Fraenkel's (1962) classification. The classes 
change in a continuous manner at 0 and at Po, Pa, . .., and in a discontinuous manner at jumps 
such as R, --t 8,. 

dashed portions are drawn doubled, to indicate that there are two profiles (mirror 
images of each other) for each point. 

Although we have numerically located only branches A and B, it is clear that these 
are merely the first two of an infinite sequence of branches A,  B, C, ... on which the 
profiles become progressively more complex. It is widely believed that the profiles of 
branches B, C, . . . are unstable, and attention is generally focused on the branch A 
profiles. The question of stability of branch A profiles may be related to the behaviour 
near the point R,, and the fact that, if R is increased through R,, a jump to a totally 
different profile is inevitable. 

6.3. Behaviour of branches A and B for 0 < 201 < 27~ 

Figure 9(a) shows a sketch of the variation of branch A as 261 increases from 0 to 
2ac N 257.5'. The locus of the maximum R, is indicated by the dashed curve. 

For 201 > 2ac, as already observed, the linearized solution for small c is physically 
irrelevant, and the same may be true of the solution of (3 .6)  also. There is nevertheless 
some interest in continuing the sequence of curves of figure 9 (a) beyond 2ac, in order 
to provide a fhther  point of contact with the results of Fraenkel(l962). This variation 
is shown in figure 9 (b), which includes branch B also. When 2a 2: 266', a fold develops 
in branch A,  and, at  a value 2ap between 266.7" and 267', it merges with branch B, the 
topology of the branches changing at this critical angle. Defining R, always as the 
Reynolds number a t  the maximum on the lower branch, R, increases discontinuously 
at 2ap,  then decreases to zero at 2a = 201; N 282', and then continues to decrease as 261 
increases to 27~.  
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FIGURE 9. Sketch of the variation of branch A and its maximum R, with a: (a) 0 < 2a < 201,; 
(b) change in topology of branches A and B aa 2a passes through 2a, N 266.8"; (c) inferred 
variation of R, aa a function of a. 

The inferred qualitative variation of R, over the full range 0-27r is shown in 
figure 9(c), in which the portions denoted B3, 8-, correspond to Fraenkel's (1962, 
figure 6) notation. 

6. Numerical results for the two-fluid situation 
We now return to the situation of $4,  in which there is a viscosity jump across 

i3 = 0. We may suppose, without loss of generality, that h = ,ul/,ue < 1. In the discus- 
sion that follows, we focus attention on the change that occurs in branch A of the 
(R, c)-diagram as h decreases from unity. Figure 10 (a) shows what happens to branch A 
for the case 2a = in, h = 0.9; note that the abscissa here is the modified constant 

C. 
(1+h),  c1 = - 

4h2 

The most striking effect is that we now have two intersecting branches, A' and A" say, 
where A' passes through the origin, and A" does not. Figure 10(b) shows the profiles 
corresponding to the points A;, A;,  A", A: (cl = 100). A; and A: are nearly (but not 
exactly) symmetric about 8 = 0. The 'degeneracy' associated with the asymmetric 
flows when h = 1 is clearly resolved when h =k 1. 

The points P', P" in figure 10 (a) correspond to  solutions for which f '(a) = 0. As R 
increases through R(P'),  the flow changes from purely divergent flow to a flow of 
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FIGURE 10. (a) Modification of branch A for 2a = when h = 0.9: the branch splits into two 
branches, A' and A"; the points P' and Pa correspond to profiles with zero gradient on 8 = a. 
(a) Velocity profiles for A = 0.9 corresponding to the points A;, A;, A;, A: on branches A' and A". 

type A; (divergent but with inflow near the wall in the less viscous fluid). Similarly, 
as Rincreases through R(P"), the flow.changes from type A: (inflow in the more viscous 
fluid) to one of type A: with inflow on both walls. It seems likely that at least one of the 
flows A;, A;, A; (probably A;)  is structurally unstable. 

On branch A', there is again a maximum value of R, R& say, and now if R is increased 
slowly from 0 through RA, the flow will (presumably) jump from branch A' to branch 
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FIGURE 11. Change in branch A' &B h decreases. 
The abscissa is c1 = t( 1 + A-1)* c. 

A". If R is increased further, a second jump will occur (presumably to branch B') when 
R = Ri, the maximum on branch A". 

Figure 11 shows the effect on branch A' of a further decrease in A. As h decreases, 
RA decreases (and the value of c1 where the maximum occurs increases quite rapidly). 
The value of R at which reversed flow appears also decreases as indicated in the 
figure. 

When R is large and negative, we again expect the solutions (on branch A') to have 
a boundary-layer character near each wall, with boundary-layer thicknesses pro- 
portional to p i  and pi in the two fluids. For the region near 8 = a, an analysis similar 
to that in $5.1 shows that, for large c, 

whereK = (&c)f, andfoandflaregivenby (5.13) and (5.15). Thereisasimilarstructure 
near 8 = - a. At leading order, the flow outside the boundary layers is effectively the 
'inviscid' flow associated with a line sink (& < 0). Across 8 = 0, the O(K2) solutions 
in the two fluids match with zero shear stress: the effectively inviscid flow is indifferent 
to a jump in viscosity at I9 = 0. Continuing to next order, we have, well away from the 

f(@ N KYo(7) +FJi(r)J 7 = Pi' K ( a - 8 ) J  (6.2) 

walls, 

indicating that there must be a weak (i.e. O( 1)) shear layer at the interface. A straight- 
forward analysis shows that, near I9 = 0, 

(6.4) 1 -X2-,iilil(l+Ale-2v1), 7, = ,ii;*KI9 (I9 2 0 ) ,  

f(@ - { -K2-,ii2(1+Aze-2v~), vZ = -p;dK8 (0 G 0 ) ,  

with A, = A-1- A-4, A ,  = A - A*. Figures 12 (a, b )  show velocity profiles for c1 = lo5, 
106 for a range of values of A (for 2a = 10'). As expected, the velocity gradient is 
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FIGURE 12. Velocity profiles for 2a = lo", and various values of A. (a) c1 = los; (b )  

The jump in velocity gradient at 0 = 0 is scarcely detectable for h > 0.6. 
c1 = 106. 

almost continuous across 8 = 0, consistent with the above argument. (The strong 
decreaae in flux as h decreases is associated with the corresponding reduction in c, 
given by (6.1): e.g., when h = 0.1, c = 3.3 x lo-%,.) 

Finally, we have investigated the behaviour of the branches A' and A" as h decreases 
(for fixed a) to the value for which a = aa(h) (E + P in figure 3a). With 2a = 150°, 
the critical value of A given by (4.1 1) is 0.228; figure 13 shows the computed behaviour 
as A decreases from 0-27 to 0.228. For h = 0-27, the branches A' and A" still cross (at 
the point V in the figure), but at h = 0.265 the curves have 'pinched off ', forming two 
new branches A' and d". At this value of A, there is no solution (on these branches) 
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FIGURE 13. Change in branches A' and A" for 2a = 150" as h decreases from 0.27 to 0.228 (of. 
figure 3). At a value of h between 0-27 and 0.265, the branches split (near V )  forming two ney 
branches A' and A" which move apart with further reduction of h. For h = 0228, branch A' 
touches the axis R = 0 at c = 0. 

with - 0.27 < R < - 0.08. As h is decreased further, d' and B" move further aprtrt, 
until (when h = 0.228) A'' lies in R < - 0.66 and A' lies in R > 0, with a minimum 
at 0 (consistent with (4.11) at the critical value of A). 

7. Discussion 
The foregoing analysis enables us (in principle) to determine the position of the 

interface in such situations aa those sketched in figure 14(u, b), even when IRal is not 
small. We have seen in Q 2 that, when I Ral < 1, the interface positions itself so that the 
ratio of fluid widths is constant. When IRaI & 1, the situation is very different. For 
example, in the situation of figure 14(u), when lRal & 1, the two fluxes Q1 and Q2 are 
equal (apart from boundary-layer corrections) and so the position of the interface in 
the straight section is determined by (2.16) with q = 1, As h --f 0, H + 1, i.e. the inter- 
face moves towards the upper boundary. 

Similarly if Q1 and Q2 are specified, then the position of the interface in the straight 
section is determined by (2.16), and its position 8 = B in the adjacent converging or 
diverging section (as, for example, in figure l4b) is, in principle, determinate from 
numerical solution of the Jeffery-Hamel problem. 

There is of course an important question concerning the stability of the various 
steady flows described in this paper. Instabilities may be of three types. First, there is 
the conventional instability of flows exhibiting points of inflexion, which may be 
expected at quite low Reynolds numbers (R 2 20). The methods of Eagles (1966) 
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PI PI - Q/+ ‘W> b Pz 

FIaum 14. Determination of the asymptotic position of the interface: (a )  a case of converging 
flow entering a uniform section; (b) a case of flow entering a diverging section. In both cwes the 
downstream position of the interface is determined in principle by the values of q = Q1/QP and 
h = p1/pI. In both caaes, the figure is schematic, and is not intended to imply that a solution 
has been found which describes the flow through the transition region, which may be extensive 
when the Reynolds number is not small. 

could perhaps be extended to cover the two-fluid situation. Secondly, there is the 
instability associated specifically with viscosity stratification, discovered by Yih 
(1967); this is a long-wavelength instability, involving inertial effects, but which 
nevertheless persists at arbitrarily small R. The physical mechanism of this instability 
is as yet obscure, and it is by no means clear how it may be affected by weak con- 
vergence or divergence of the fluid boundaries. 

Finally, there is the question of structural stability (in the sense of bifurcation 
theory) already alluded to in 5 6. If we imagine the steady problem (3.5) imbedded in 
the wider class of unsteady problems (with the same boundary conditions) 

af+ (pf + 4pf + 2pf 2 = c, (7.1) 

then the steady solutions obtained above may be unstable to perturbations S’(S, t ) .  
On general grounds (Benjamin 1976) one would expect approximately half of the 
multiplicity of flows at  a given Reynolds number to be structurally unstable; an 
associated hysteresis behaviour in increasing and decreasing the Reynolds number 
through a range of positive values may be anticipated. 

at 

These various stability tlspects perhaps deserve further study. 
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